The ORIOLE trial has been previously described in detail here. To recap, it was a small (Phase 2) randomized trial with 36 men treated with SABR to bone scan/CT-detected oligometastases. There were 18 men in the untreated control group. The men were followed for 6 months to see if there was any progression of their cancer. Progression was defined as either PSA progression or new metastases detected on bone scan/CT or physical symptoms of decline (e.g., pain). Of course, with only 6 months of follow-up, most of the detected progression was PSA progression. Phuoc Tran, the lead investigator of the ORIOLE trial, reported the 6-month results here:
- Progression-free survival (PFS) was 81% in the SABR group vs 39% in the control group.
- Median PFS was not yet reached in the SABR group vs 5.8 months in the control group.
- The time to progression was increased by 70% by the treatment.
- Progression has not been reached among those treated patients followed for over a year.
- PFS was 84% in the fully treated group vs 36% in those with undiscovered metastases.
- Median PFS was not reached in the fully-treated group vs 11.8 months in those with undiscovered metastases.
- Distant metastasis-free survival (i.e., metastases distant from the ones that were treated) was 29 months in the fully-treated group vs 6 months in those with undiscovered metastases.
SBRT has been found in lab studies to elicit a strong immune response. It releases cancer antigens into the bloodstream that are detected by T-cells, which become activated to find more cancer. That T cell response to radiation is thought to contribute to its effectiveness (called "the abscopal effect"). The investigators tracked the T cell response and found a significant response in the SABR-treated men.
Progression-free survival when most of the progression is PSA progression is not the endpoint we need to evaluate this therapy. SABR "treats" PSA. "Treating PSA" would occur if the radiation only provides excellent local control, while not necessarily delaying progression elsewhere. PSA is secreted in proportion to the size of the tumors, so treating only the tumors will do nothing to stop the micrometastases that are elsewhere. However, the strong T-cell response found by this study suggests that there may be a true delay in progression and not only a delay in PSA. Also, the fact that distant metastases were delayed by almost 2 years among those who had all of their PSMA-detected metastases irradiated, suggests a true response.
This is an important first step toward discovering whether oligometastasis-directed therapy provides a benefit, and how it works. It does not yet provide the answer to whether there is a survival benefit to such therapy. It also does not answer the question of whether ADT can be delayed when radiation has been given. There are several, larger clinical trials that will answer those questions more definitively. Meanwhile, the patient with rising PSA after prostate therapy should consider:
- A PSMA-based PET scan (available in some clinical trials, and probably widely available within a year).
- Talking to a radiation oncologist about SABR treatment of metastases if all discovered metastases are in places where it is entirely safe to treat them
- Not forgoing ADT adjuvant to SABR treatment until there is more proof.