Showing posts with label chemo. Show all posts
Showing posts with label chemo. Show all posts

Sunday, May 23, 2021

Triplet therapy for newly diagnosed metastatic men beats docetaxel+ADT

(Updated)

I. Triplet therapy with abiraterone (PEACE1)

(Update 4/9/22) Fizazi et al. published the full results of PEACE1 in The Lancet. PEACE1 was a European randomized clinical trial (RCT) conducted from 2013-2018 among 1,173 men who were newly diagnosed with metastases.  All patients got standard of care, which consisted of ADT and docetaxel (after 2015).

They randomized patients to get:

  • prostate radiation or not
  • abiraterone+prednisone or not

After median follow-up of about 3-4 years, they found that prostate radiation:

  • prostate radiation reduced mortality by about a quarter in men who got docetaxel, but it was not statistically significant.
  • prostate radiation cut radiographic progression-free mortality in half.

Adding abiraterone to standard of care (including docetaxel):

  • Increased median survival from 4.4 years to >5.7 years (not reached)
  • Mortality was cut by 25%
    • Cut by 28% in those with high volume metastases
    • Cut by 17% in those with low volume metastases (not statistically significant)
  • Increased radiographic progression-free survival from 2.0 years to 4.5 years
  • Radiographic progression was cut in half
    • Radiographic progression was cut by 53% in those with high volume metastases.
    • Radiographic progression was cut by 42% in those with low volume metastases.
  • Time to castration resistance increased from 1.4 to 3.2 years
    • Castration resistance was cut by 62%
  • Prostate cancer-specific survival increased from 4.7 years to not reached, a 31% decline in prostate cancer mortality
The benefits of receiving the early triplet continued to be evident in patients who later received other therapies, demonstrating a benefit to the triplet over sequential therapy.

There was no increase in the incidence of severe adverse events from receiving docetaxel.


(Update 9/19/21) Karim Fizazi presented the following chart at the ESMO Congress today:


Combining docetaxel and abiraterone in men who were originally diagnosed with high volume metastases increased overall survival significantly over either alone.

(May 23, 2021) The first results of the long-awaited PEACE-1 randomized clinical trial (RCT) are in. They randomized newly diagnosed metastatic men to either prostate radiation or abiraterone or standard-of-care (SOC). SOC included docetaxel for many of the men.

Radiographic progression-free survival increased by 2.5 years (from 2.0 to 4.5 yrs) with the addition of abiraterone to docetaxel. Time to castration resistance increased by 1.7 yrs (from 1.5 to 3.2 yrs). 

The full results will tell us how much the prostate radiation adds, and the effect on overall survival. The analysis by metastatic burden will be important too. Meanwhile, docetaxel+abiraterone+ADT should be considered the new standard of care.

How does this combination therapy compare to previous RCTs for docetaxel or abiraterone?

Because the STAMPEDE RCTs for docetaxel and abiraterone occurred at about the same time, 566 patients were randomized to one or the other. Sydes et al. reported the outcomes after a median of 4 years of follow-up. 
  • Abiraterone reduced PSA more quickly, as reflected in "failure-free survival" (time to PSA increase, clinical progression, or death) and "progression-free survival" (time to first "failure" event, excluding PSA). 
  • Those who received docetaxel first soon caught up. There were no significant differences in "metastasis-free survival," "prostate cancer-specific survival," "overall survival," or "time to the first skeletal-related event (pain or fracture)"
  • Serious toxicity (Grade 3 or greater) was also equal: 50% for docetaxel, 48% for abiraterone.

The STAMPEDE researchers (the STOPCAP group) did a meta-analysis of the STAMPEDE trials that concluded that abiraterone probably had a greater effect than docetaxel, but unlike the analysis above, it was not a direct comparison. They concluded that either should be recommended.

The other RCTs for metastatic hormone-sensitive prostate cancer (mHSPC) included STAMPEDE- abiraterone, LATITUDE- abiraterone, STAMPEDE-docetaxel, CHAARTED-docetaxel.GETUG-AFU-15(docetaxel) did not detect a difference in survival from the early use of docetaxel. 30% had prior treatment. There were differences in the populations studied in each trial that should be understood.

LATITUDE screened for more advanced patients - 80% were "high risk." High risk was defined by having 2 of 3 "high-risk" features, either: Gleason 8-10, or ≥ 3 bone metastases or visceral metastases. About half had performance status of 1 or 2 ("0" is the best performance status).

CHAARTED started by recruiting only patients with a high burden of metastases. But only 73% were de novo, meaning 27% had been previously treated before they entered the trial. They later opened the trial to men with fewer metastases and ended up with a small group (27%) of low burden de novo patients. They defined "high burden" as visceral metastases or ≥ 4 metastases with at least 1 outside the axial skeleton.

The two STAMPEDE trials recruited almost entirely (95%) de novo patients. 56% were "high burden" by the CHAARTED definition. 52% were "high risk" by the LATITUDE definition. 26% had performance status of 1 or 2.

PEACE1 recruited only de novo metastatic patients, with excellent performance status. 57% had high-risk features by the LATITUDE definition.

The following chart shows how long it took for patients to progress on each of the early interventions. Complicating analysis, each trial used a slightly different definition of progression.

Time to "progression" following each early therapy


abiraterone+docetaxel+ADT

docetaxel+ADT

abiraterone+ADT

ADT alone

Trial notes

PEACE1*

4.5 yrs

2.0 yrs



100% de novo, 100% perf. status 0, 57% high volume

STAMPEDE

(abiraterone)



Not reached (> 3.4 yrs)

2.0 yrs

94% de novo,26% perf.status 1 or 2, 55% high volume

LATITUDE*

(abiraterone)



2.8 yrs

1.2 yrs

100% de novo, 45% perf. Status 1 or 2, 80% high volume/high risk

STAMPEDE

(docetaxel)


3.1 yrs


1.7 yrs

95% de novo, 56% high volume

CHAARTED§

(docetaxel)


2.8 yrs


1.7 yrs

73% de novo, 65% high volume

time to radiographic progression or death
time to first symptomatic event or death
§ time to symptoms or radiographic progression

While comparison is complicated, the extension of progression-free survival by 2.5 years by adding abiraterone to docetaxel alone is impressive. Docetaxel adds 1 - 1.5 years to progression-free survival over ADT alone. Abiraterone adds 1 - 1.5 years to progression-free survival over ADT alone.



II. Triplet Therapy with Nubeqa (darolutamide) - ARASENS

(Update 12/3/2021) Bayer announced that the combination of Nubeqa (darolutamide) and docetaxel + ADT increased survival over docetaxel + ADT alone in the ARASENS trial. This constitutes the second success for "triplet therapy."

(Update 2/15/2022) The first results of the ARASENS trial were presented at the 2022 ASCO Genitourinary Conference. All 1,306 patients treated from 2016-2018 were randomized to receive darolutamide (DARO) or placebo (PBO) on top of docetaxel and ADT. They found that:
  • DARO significantly decreased the risk of death by 32.5%
  • The survival advantage subsisted even though the PBO group received more therapies later
  • The survival advantage was maintained in all subgroups (i.e., disease extent, type of metastases, ALP levels)
  • DARO delayed time to castration resistance by 64%
  • DARO delayed time to pain progression by 21%
  • DARO delayed time to first skeletal event/fracture
  • DARO delayed time to next chemotherapy
  • Treatment-related adverse events were similar and were highest during the time chemo was given (mainly neutropenia)
  • Treatment discontinuation was low and similar in both groups (13.6% for DARO) vs (10.6% for PBO)
(update 8/5/22) The FDA has approved triplet therapy with Nubeqa (darolutamide) and docetaxel for men newly-diagnosed with metastases.

(update 2/18/23) Maha Hussain presented some planned subgroup results at the 2023 ASCO GU Conference. They defined two "volume groups" and two "risk groups" of the 1,305 men in the trial.

The volume groups were:
  • High Volume (77% of patients)= Visceral metastases and/or 4 bone metastases with at least one outside of the axial skeleton
  • Low Volume (23% of patients) = Every other newly-diagnosed metastatic man in the trial
The risk groups were:
  • High Risk (70% of patients) = any ≥2 of these risk factors: Gleason score≥8, ≥ 3 bone metastases, visceral metastases.
  • Low Risk (30% of patients) = Every other newly-diagnosed metastatic man in the trial
With about 4 years of follow-up:
  • Overall survival increased significantly in the High Volume (mortality risk reduced by 31%). In the Low Volume subgroup, the difference (by 32%) was not yet statistically significant, but may be with larger sample size or more time (survival curves separated after 3 years). The fact that the hazard ratios are similar suggests that the same benefit obtains regardless of volume and that only the immaturity of data is the reason for the lack of statistical significance.
  • In High Risk (mortality risk reduced by 29%), and Low Risk (by 38%) subgroups, the differences were statistically significant.
  • Time to castration resistance increased significantly in all subgroups.
  • Time to next chemotherapy increased significantly in all subgroups.
  • Adverse events (see this link) were similar in all subgroups.
(Update 4/21/24)The effect on PSA progression has been reported:
  • The percent of patients with undetectable (<0.2) PSA at any time was higher with triplet - 67% vs 29%
    • 62% vs 26% in the high-volume subgroup
    • 84% vs 38% in the low-volume subgroup
  • Time to PSA progression was 74% shorter without the triplet
    • 70% shorter in the high-volume subgroup
    • 91% shorter in the low-volume subgroup
  • Undetectable PSA at 24 weeks predicted longer survival


III. SENESCENCE WITH SEQUENTIAL USE

Both the TITAN trial of Erleada (apalutamide) and the ENZAMET trial of Xtandi (enzalutamide) showed no benefit for the advanced hormone therapy when docetaxel had been used previously. Timing is important! When chemo or advanced hormone therapy is used as monotherapy, protective mechanisms (like cellular senescence) kick in soon afterward. It protects the cancer cells from destruction by the other medicine. They have to be used together or wait until the first drug stops working.


IV. (Update 6/6/22) Triplet Therapy with Xtandi (enzalutamide)

An updated, subgroup analysis of the ENZAMET trial among newly diagnosed men with metastases confirms the triplet of ADT+enzalutamide+docetaxel increases survival. 5 year survival was 60% for the triplet vs 52% for ADT+docetaxel. The benefit was especially pronounced in the first 2 years of triplet therapy in men with high volume metastases. There was no benefit to the triplet in recurrent men with metachronous metastases.


V. Does docetaxel only benefit mHSPC patients with a high-volume of metastases?

This has stirred much controversy. Gravis et al. argue that the overall survival improvement from docetaxel was seen in CHAARTED only among men with high-volume metastases was a real biological effect (i.e., that high-volume PC is a different disease from low-volume PC, that responds differently to chemo). Armstrong argues for a biological difference. They acknowledge, however, that the small sample size of de novo men with low volume metastases (n=154) and their short follow-up (only 16% had died during the 48 months of follow-up) may be underestimating the benefit in the low volume, de novo subgroup. Remember that in CHAARTED, the low-volume subgroup was not recruited initially, so the follow-up is shorter in the group that needs the longer follow-up.

Clarke et al. argue that STAMPEDE is the more definitive trial because its sample size of mHSPC men with low-volume metastases was over twice as great (n=362) and the follow-up was longer (62% of the docetaxel patients had died during 78 months of follow-up). They did not find evidence of heterogeneity - low-volume PC responded just as much to chemo as high-volume PC. While the effect on low volume PC was similar, the statistical confidence in its effect did not meet 95% confidence. They attribute this to insufficient sample size (power). Suzman and Antonarakis agree that chemo should be offered to all mHSPC men, regardless of volume of metastases. It would seem that a meta-analysis combining the low-volume, de novo subgroups from both CHAARTED and STAMPEDE might be sufficiently powered to provide a more definitive answer. Patients wishing to understand why analyses of subgroups are controversial, may be amused by this analysis of STAMPEDE subgroups. The authors found that patients born on a Monday benefited the most from abiraterone, and it was statistically significant. while patients born on a Friday had the least benefit, and it wasn't statistically significant. They further found that men diagnosed on a Monday did not benefit from abiraterone, whereas men diagnosed on other days had a statistically significant benefit. These absurd findings are sometimes known as "p-hacking" or "data dredging." This interview discusses this error and the mistake of drawing biological inferences from statistical significance. Pre-specifying subgroups is one way to avoid such errors, but drawing conclusions from inadequately powered subgroups, while tempting, should be avoided. This controversy is reflected in the conflicting recommendations that constitute the standard of care.

The current NCCN guidelines state: "Docetaxel should not be offered to men with low volume metastatic prostate cancer, since this subgroup was not shown to have improved survival in either the ECOG study or a similar European (GETUG-AFU 15) trial." The current ASCO guidelines state: "Recommendation 1.2. For patients with low-volume metastatic disease (LVD) as defined per CHAARTED who are candidates for chemotherapy, docetaxel plus ADT should not be offered (Type: evidence-based, benefits outweigh harms; Evidence quality: high; Strength of recommendation: strong for patients with LVD)." On the other hand, the current AUA/ASTRO/SUO guidelines state: "15. In patients with mHSPC, clinicians should offer continued ADT in combination with either androgen pathway directed therapy (abiraterone acetate plus prednisone, apalutamide, enzalutamide) or chemotherapy (docetaxel). (Strong Recommendation; Evidence Level: Grade A) Canadian Urological Assn (CUA) guidelines state: "Docetaxel plus ADT may also be an option in patients with mCNPC/mCSPC with good performance status with low-volume disease (Level 2, Weak recommendation)." NICE (UK) guidelines state: "Offer docetaxel chemotherapy to people with newly-diagnosed metastatic prostate cancer who do not have significant comorbidities." European Urological Assn (EAU) guidelines state: "Based on these data, upfront docetaxel combined with ADT should be considered as a standard in men presenting with metastases at first presentation provided they are fit enough to receive the drug [1070]"

I personally believe that the STAMPEDE researchers make a stronger case pending better data from PEACE1.

It is also possible that genomics will allow better selection of patients for early chemotherapy. Hamid et al. examined tissue collected for the CHAARTED trial. They found a subtype called "Luminal B" that was associated with improved survival from chemotherapy. This finding has not yet been validated on an independent trial. Meanwhile, DECIPHER provides the test as part of its GRID analysis.

The major advantages of early chemo vs "saving it for later" are:
  • Longer survival advantage
  • Side effects are milder when patients are less debilitated from years of cancer
  • As many as 10 infusions (usually 6) can be given if it is well tolerated
  • Most patients are not resistant, so docetaxel can be repeated
  • If there is resistance, cabazitaxel can be given


Sunday, December 18, 2016

Small Cell Prostate Cancer Clinical Trials

(frequently updated)

Small Cell Prostate Cancer (SCPC), and more generally Neuroendocrine Prostate Cancer (NEPC), are thankfully rare types of prostate cancers. They are not responsive to hormone therapy, to taxanes (Taxotere or Jevtana), or to radiation. They are difficult to detect and monitor with the kinds of imaging used to detect prostate adenocarcinoma (mpMRI, bone scans, PSMA PET scans), but may show up with FDG PET (see this link). They do not put out PSA, PAP or bone alkaline phosphatase. Special biochemical tests or biopsies for chromogranin A, neuron-specific enolase (NSE), synaptophysin,  DLL-3, CD56, and other biomarkers are required. It often appears at a "mixed type." 

Sub-types

Not all neuroendocrine prostate cancers carry the same prognosis. Aggarwal identified a sub-type that became prevalent in 17% of patients who were heavily pretreated with enzalutamide (Xtandi) and abiraterone (Zytiga). He calls this "treatment-emergent small cell neuroendocrine prostate cancer (t-SCNC). The pre-treatment probably selected for this subtype that may be partially responsive to familiar therapies. The "treatment-emergent" subtype and the small amounts sometimes detected initial biopsies do not appear to be as virulent (see this link). There are some studies that indicate that they may appear spontaneously in later stages of normal prostate cancer development. Aggarwal commented:
“Although long term androgen deprivation therapy may be associated with the development of treatment-emergent small cell neuroendocrine prostate cancer (t-SCNC) in a minority of patients, multiple studies have confirmed the long-term benefit of abiraterone and enzalutamide for prostate cancer patients in various disease settings. Use of these agents should not be limited by concern for the subsequent development of t-SCNC.”
Aggarwal has announced a clinical trial where he will be testing a combination of Xtandi, Keytruda, and ZEN-3694 in (among others) a group of men identified with the t-SCNC subtype. ZEN-3694 is an experimental medicine that inhibits a gene called MYC, which is often over-expressed in advanced prostate cancer. 


Aggarwal is also testing FOR-46 targeting the CD-46 protein that often is expressed in neuroendocrine tumors.


Because there are several subtypes of neuroendocrine PCa, Novartis is running a trial that takes patients with 3 different subtypes and treats them with a radiopharmaceutical with the most appropriate ligand tailored to the dominant subtype. A biopsy determines whether it is neuroendocrine and which of 3 subtypes predominates. 177Lu is attached to any of the following 3 ligands:
  1. PSMA
  2. SSTR2 (Somatostatin receptor)
  3. GRPR (Gonadotropin releasing hormone receptor)


Chemotherapy

Because of the "mixed type," chemo often includes a taxane. More often, a platin is mixed in a cocktail with another chemo agent, like etoposide. A couple of case reports from Japan (see this link and this one) reported some success with a platin combined with irinotecan.

This clinical trial at Duke has two chemotherapies (cabazitaxel and carboplatin), as well as two checkpoint blockade-type immunotherapies (nivolumab and ipilimumab):
CHAMP

Nuclear Medicine/ Somatostatin

The Urology Cancer Center in Omaha, Nebraska has announced a clinical trial of 225Ac-FPI-2059 for neuroendocrine cancers. FPI-2059 is a small molecule that attaches to the neurotensin receptor 1 peptide that is expressed by neuroendocrine cancer cells.

Another radiopharmaceutical has been tried by the nuclear medicine department at the University of Heidelberg. I suggest that anyone who is interested email or call (they all speak English) Uwe_Haberkorn@med.uni-heidelberg.de Phone: 06221/56 7731. With the euro now at close to parity with the dollar, this medical tourism is an especially attractive option:

213Bi-DOTATOC shows efficacy in targeting neuroendocrine tumors

A similar radiopharmaceutical using Lu-177-DOTATATE (called Lutathera) has been FDA-approved for small cell cancer affecting the digestive tract. DOTATOC (and also DOTATEC and DOTATATE) binds to somatostatin receptors on the small cell digestive tract cancer surface, where it is highly expressed. It is rarely expressed in small-cell prostate cancer, but there have been some isolated case reports like this one or small trials like this one. This means that treatment with a somatostatin analog (octreotide, lanreotide, or pasireotide) may be somewhat effective even without the radioactive emitter attached to it. These drugs are available now in the US, are not toxic, and your doctor can prescribe them without a clinical trial. there is a clinical trial of it in London for any solid tumor:

https://clinicaltrials.gov/ct2/show/NCT02236910

These clinical trials include somatostatins:

https://clinicaltrials.gov/ct2/show/NCT01794793
https://clinicaltrials.gov/ct2/show/NCT02754297

This clinical trial at Johns Hopkins uses Lutathera to treat neuroendocrine prostate cancer, specifically:


While the presence of somatostatin receptors in the tumor can be determined by pathological analysis (immunohistochemical (IHC) staining for SSTR2), there is an FDA-approved PET scan that uses Ga-68-DOTATATE that can detect it without a biopsy. It is used to detect neuroendocrine tumors that are often non-prostatic. Researchers at Emory found that Ga-68-DOTATATE uptake is higher even in neuroendocrine tumors of prostatic origin, which suggests that somatostatin-based therapy may be beneficial. (One patient who was positive for a BRCA2 mutation but negative for NEPC had high uptake as well.)

DLL3

DLL3 is a protein that is expressed on the surface of neuroendocrine cells regardless of the cancer of origin, and has been identified in two-thirds of neuroendocrine prostate cancer (NEPC) cells. An antibody linked to a chemotherapy, called Rova-T, against DLL3 has been developed and has shown some promise against NEPC in a preclinical study. Unfortunately, AbbVie discontinued R&D after it failed to meet goals for small cell lung cancer (SCLC). A Phase 2 trial that included NEPC was discontinued. Misha Beltran at Dana Farber has tried an antibody-drug conjugate (rovalpituzumab teserine) targeted to DLL3 on a single patient. After two treatments, his metastases shrank and stabilized.

Harpoon has announced a clinical trial of HPN328  for people with advanced cancers that express DLL3. HPN328 is a bispecific T-cell engager (BiTE) that targets DLL3 and also promotes T cells to attack those cells exhibiting it. AMG757 is also a BiTE. Amgen has announced a clinical trial of AMG 757 for advanced prostate cancer. Phanes Therapeutics has a BiTE clinical trial targeting DLL3.

AMG119 is a CAR-T therapy that targets DLL-3. CAR-T involves treating one's own T-cells by sensitizing them to DLL3. Both of these create a T-cell and a cytokine response in environments that otherwise have low immune cell activity. That response may kill bystander cells, and through a phenomenon called "antigen spreading," may be able to kill other cancer cells that do not exhibit DLL3. (BiTE and CAR-T therapies that target PSMA are  in clinical trials noted at end of this article)

The Wang Lab at Duke has specific expertise in morphological analysis of NEPC and IHC staining for DLL3. It may be a good idea to get a second opinion from them.

Checkpoint blockade

Another recent discovery is that PD-L1 is highly expressed in SCPC. This opens the door to immunotherapies that target the PD-1/PD-L1 pathway, like Keytruda.

PD-L1 expression in small cell neuroendocrine carcinomas

Small clinical trials have so far shown little benefit:



Sunday, August 28, 2016

Docetaxel with primary radiation therapy for high-risk prostate cancer


(Updated)

In 2004, the FDA approved docetaxel as the first chemotherapy drug proven to extend survival in metastatic hormone-refractory prostate cancer. Although the survival benefit was a modest 2.5 months, researchers launched clinical trials to determine whether the survival advantage could be increased by using docetaxel earlier in disease progression or by combining it with other therapies. Those trials are beginning to mature now.

Last year, the CHAARTED study demonstrated a 17-month survival advantage stemming from starting docetaxel at the same time as ADT in men with multiple metastases. However, another trial, GETUG-AFU 15, did not demonstrate a benefit. Last month, early reports of the STAMPEDE trial confirmed the benefit, which was 22 months among men with any metastases upon initial diagnosis. As in the CHAARTED trial, the evidence of benefit has not yet emerged among men with advanced cancer who did not yet evince metastases.

(update 7/28/2022) STAMPEDE reported results of the use of docetaxel in 230 newly diagnosed high-risk men compared to 460 who only received standard-of-care (SOC). SOC  consisted of ADT ± prostate radiation. "High-risk" also included men with pelvic lymph node metastases (in about half the men) but no distant metastases. After 6.5 years of follow-up:
  • 5-yr metastasis-free survival was 82% with docetaxel vs 77% without docetaxel -> no significant difference
  • no evidence of prostate cancer survival benefit
  • no evidence of overall survival benefit
  • it did lower PSA
Several trials looked at combining docetaxel with radiation among men diagnosed with high-risk localized prostate cancer. RTOG 0521 showed that the 10-year overall survival was 64% without docetaxel and 69% with it -- a statistically insignificant difference. There was insignificant improvement in disease-free survival, and incidence of metastases at 10 years.

Another clinical trial, GETUG-12, was designed to find out whether chemotherapy (docetaxel + estramustine) pretreatment would provide a survival benefit when added to 3 years of ADT and RT begun 3 months from the start of chemo (in 87% of the patients). The study was described and early results given in 2010, so I will not go into the details again. However, some follow-up results have recently been published. (Update 12/4/2018Fizazi et al. report that after 9.6 years median follow-up, relapse-free survival was 11.6 years among those who received chemo versus 8.1 years among those who did not. Clinical/radiographic relapse-free survival was 13.9 years among those who received chemo versus 12.5 years among those who did not. Metastasis-free survival, prostate cancer-specific survival, and overall survival were not significantly different. They further report equal levels of late-term high-grade side effects in both groups, and no deaths attributable to the chemotherapy.

These are not yet the improvements in long-term survival that we eventually hope to see by adding docetaxel. The long wait for differences in survival once again highlights the very long natural history of the disease, even in men diagnosed with high-risk prostate cancer.


(Update: 6/28/2018) A Scandinavian trial (SPCG-13) reported no benefit to adding docetaxel after ADT+RT in unfavorable risk patients. 376 patients with unfavorable intermediate-risk or high-risk prostate cancer were randomized to receive either:

A. RT (at least 74 Gy) +ADT followed by docetaxel (75mg/m2) every 3 weeks for 6 cycles
B. RT (at least 74 Gy) +ADT

After 5 years of follow-up:
  • The rate of biochemical failure was the same for both groups, at about 30%.
  • There were 20 deaths in Group A, 9 attributable to prostate cancer
  • There were 23 deaths in Group B, 7 attributable to prostate cancer
  • Febrile neutropenia, which can be life-threatening, occurred in 17% of Group A.
Five years should be long enough to start seeing a difference in biochemical failure rates, but none was observed and the survival curves showed no signs of diverging. Based on this clinical trial, there was no benefit, but substantial risk to adding docetaxel after RT+ADT in unfavorable risk patients.

(Update 10/16/2018) A small (n=132) Spanish trial  (more details here) also found no benefit to adding docetaxel to RT+ADT in high-risk men. Patients were randomized to one of two groups:

A. RT (74 Gy) +ADT (LHRH agonist for 3 years)
B. RT+ADT (as above) followed by 9 weekly cycles of docetaxel (20 mg/m2)

Patient characteristics were:
  • Stage T3/4: 81%
  • Gleason score ≥ 8: 77%
  • PSA>20: 29%
  • positive lymph nodes: 18%
After 5 years of follow-up:
  • Biochemical recurrence-free survival was not statistically different: 93% for Group A, 85% for Group B
  • Progression-free survival was not statistically different: 93% for Group A, 84% for Group B
  • Overall survival was not statistically different: 93% for Group A, 94% for Group B

There is a ten-year update of RTOG 9902, a clinical trial begun in 2000 and closed to accrual in 2004 because of excess toxicity. Although the study ended before it met its accrual goal, patients continued to be tracked. The study protocol included:
  • 380 high-risk patients were randomized to two arms
    • High Risk = Gleason score≥7 and PSA from 20 to 100 ng/ml or 
      • Gleason score≥8 and stage≥T2 
  • Two arms: 
    • Chemo + ADT + RT 
    • ADT + RT 
  • Chemo= Paclitaxel + Estramustine + Etoposide
  • ADT= LHRH agonist (24 months) + anti-androgen (4 months), both begun 2 months before RT
  • RT= 70 Gy to prostate only
The ten-year results were as follows:
  • Overall survival: 63% with chemo, 65% without chemo (no sig. difference)
  • Local progression: 7% with chemo, 11% without chemo (no sig. difference)
  • Distant metastases: 14% with chemo, 16% without chemo (no sig. difference)
  • Disease-free survival: 26% with chemo, 22% without chemo (no sig. difference)
This trial was begun before docetaxel became available. Docetaxel is far more effective and far less toxic than the chemo used in this study. They also used a radiation dose of only 70 Gy, and did not include the pelvic lymph nodes, which we now know to be inadequate for high-risk patients.

Taken together, all of these trials tell the same story - docetaxel provides no benefit before there are distant metastases.